7,469 research outputs found

    Coordination in software agent systems

    Get PDF

    Dietary patterns, insulin sensitivity and inflammation in older adults.

    Get PDF
    Background/objectivesSeveral studies have linked dietary patterns to insulin sensitivity and systemic inflammation, which affect risk of multiple chronic diseases. The purpose of this study was to investigate the dietary patterns of a cohort of older adults, and to examine relationships of dietary patterns with markers of insulin sensitivity and systemic inflammation.Subjects/methodsThe Health, Aging and Body Composition (Health ABC) Study is a prospective cohort study of 3075 older adults. In Health ABC, multiple indicators of glucose metabolism and systemic inflammation were assessed. Food intake was estimated with a modified Block food frequency questionnaire. In this study, dietary patterns of 1751 participants with complete data were derived by cluster analysis.ResultsSix clusters were identified, including a 'healthy foods' cluster, characterized by higher intake of low-fat dairy products, fruit, whole grains, poultry, fish and vegetables. In the main analysis, the 'healthy foods' cluster had significantly lower fasting insulin and homeostasis model assessment of insulin resistance values than the 'breakfast cereal' and 'high-fat dairy products' clusters, and lower fasting glucose than the 'high-fat dairy products' cluster (P≤0.05). No differences were found in 2-h glucose. With respect to inflammation, the 'healthy foods' cluster had lower interleukin-6 than the 'sweets and desserts' and 'high-fat dairy products' clusters, and no differences were seen in C-reactive protein or tumor necrosis factor-α.ConclusionsA dietary pattern high in low-fat dairy products, fruit, whole grains, poultry, fish and vegetables may be associated with greater insulin sensitivity and lower systemic inflammation in older adults

    Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste

    Get PDF
    Swelling kinetics of superabsorbent polymers (SAP) in fresh concrete is complex, but its understanding is crucial for optimisation in practical applications. In this study, the effect of concentration of ions common in pore solution (Na+, K+, Ca2+, Cl−, OH−, SO42−) and cyclic wetting/drying on the swelling and ionic exchange of poly(AA) and poly(AA-co-AM) were investigated. Results show that swelling is not a simple function of concentration or ionic strength. In cement paste, SAP absorbs Ca2+ and releases its counterion (Na+, K+) into pore solution. Ca2+ binds with SAP and decreases initial swelling, but the bound Ca2+ can be displaced and swelling gradually recovers. Swelling increases with increase in alkalinity, but decreases with increase in calcium concentration. The higher the degree of ion exchange, the lower the swelling of SAP. Poly(AA) is more susceptible to Ca2+ complexation and therefore achieves a lower swelling ratio and slower swelling recovery compared to poly(AA-co-AM)

    Droop Control of Distributed Electric Springs for Stabilizing Future Power Grid

    Get PDF
    published_or_final_versio

    Intracerebral haemorrhage complicating anticoagulant therapy among Hong Kong Chinese

    Get PDF
    PosterBACKGROUND: Anticoagulation is effective to prevent cardioembolism in patients with atrial fibrillation (AF) and prosthetic heart valves, but carries risk of potentially life-threatening intracerebral haemorrhage (ICH). The ideal international normalised ratio (INR) for Chinese patients on warfarin treatment is uncertain. We aimed to study the clinical and radiological characteristics of Chinese patients who developed acute ICH while on warfarin …published_or_final_versio

    The role of TcdB and TccC subunits in secretion of the photorhabdus Tcd toxin complex

    Get PDF
    The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5:1:1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man
    • …
    corecore